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One of the most general causes of severe external casing corrosion in deep wells is the effect of spon- 
taneous electrochemical potentials generated by the concentration contrasts between the connate 
formation waters and the drilling mud. These potentials are registered on the open hole electrical well 
logs as the so called S.P. curve. 

The S.P. currents caused by the spontaneous potentials in the electrically conductive environment 
near the intersection of formation boundaries with the drillhole are short-circuited by the introduction 
of casing in the hole and the effects of the numerous cells are superimposed along the length of the 
casing. The anodes of the resulting system of currents are the critical areas of external corrosion. 

The quantitative theory for the computation of the anodic current densities and the corresponding 
external iron loss was derived by the author in 1955. The present article gives excerpts of the theory 
of the spontaneous potentials, S.P. currents and their superposition along the casing. Significant im- 
provements are introduced in the numerical analysis leading to the digital computation of the iron-loss 
profiles. A field example is given for one of the geothermal wells in the Cerro Prieto field in Baja 
California, Mexico, showing pitting depth penetrations of up to 1 mm per year which suggests a casing 
failure span of around fifteen years for unprotected pipe. 

The present approach can be expanded directly or by the use of finite element computational tech- 
niques to take into account effects of casing cement and cathodic polarization. Such extension would 
lead to meaningful prognostication of cathodic protection current requirements for individual wells. 

1. Introduction 

For the last half century almost all drilling of deep holes has been done with rotary drilling equipment. 
In this process the rock chips cut out of the formations by the rotary drill bit are carried to the surface 
by a circulating viscous mud slurry. In the majority of cases these muds are made up of available surface 
waters and pulverized clay minerals of the montmorillonite-bentonite class, with barite as a weighting 
agent. As in the deeper strata the connate formation waters, not flushed by groundwater movement, are 
normally of appreciable degrees of salinity, an ionic concentration contrast exists between the drilling 
fluid in the borehole and the connate waters in the horizons that are penetrated. 

These concentration contrasts give rise to a variety of electrochemical diffusion potentials which, 
in the conductive surroundings, cause currents to flow around the points of intersection of the bore-hole 
with the different formation boundaries. The ohmic drops of these currents in the mud column were 
noticed by the early operators of electric resistivity logging devices (carottage dlectrique) in the Baku 
oilfields. Soon the diagnostic correlation of these ohmic 'spontaneous' potential drops with formation 
and connate water characteristics were realized and the potentials measured against a remote surface 
reference electrode were recorded as a separate curve, the so called Spontaneous Potential or S.P. curve 
on the electric bore-hole logs. The currents occasioning the ohmic drops are referred to as S.P. currents. 

When casing is set in a drillhole, the metal pipe short-circuits the S.P. currents and the effects of the 
many cells are superimposed along the length of the pipe. The current variations along the pipe corre- 
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spond to anodic and cathodic areas, where positive current leaves or enters the metal The strongly 
anodic regions are the locations of the most severe external corrosive attack on the casing. 

The open hole recording of the S.P. curve gives us the basic data, for any particular hole, for deriving 
by the techniques of mathematical physics, the resulting current distribution in the pipe once casing is 
set. The evaluation of the analytical expressions for the casing current distribution obtained by the 
application of potential theory and linear transform theory, is done by digital computation and requires 
a considerable amount of numerical analysis. Based on the analytical presentation of the S.P. currents by 
Doll [1], the theory of the casing corrosion current distributions was developed by the author in 
response to a question by Radd regarding a possible connection between the S.P. and external casing 
corrosion [2]. An improved numerical approach for the computational procedure was added by de Witte 
and Fournier [3]. Iron loss rates prognosticated from computed anodic current densities compared 
spectacularly with direct measurements on pulled casings in the San Miguelito oil field in California [4]. 
The current paper reviews the electrochemistry of the S.P. phenomena, presents the theory of the casing 
current distribution, adding a number of mathematical improvements and gives a field example for a well 
in the geothermal field of Cerro Prieto in Baja, California. 

2. Spontaneous potentials 

Where the filtrate of the drilling mud makes contact with the connate water in electrochemically inert 
formations such as clean sandstones and limestones, the concentration contrast leads to the establish- 
ment of simple liquid-liquid junction potentials. On the other hand, where the ionic diffusion takes 
place through endurated pure shales which because of the fixed negative charges on the clay mineral 
lattices are permeable to positive ions only, the formation of Nernst potentials results. 

The liquid junction potentials are given by 

n T [ u - - v  \ c~ w 
E 1 ~ -~- |u---~V| In \ / ( l )  

~mf 
and the Nernst potentials by 

R T  aw 
E2 = ~ -  in (2) 

O~mf 

where R, T and F have their usual meanings, u and v are the mobilities of the positive and negative ions, 
respectively, for the simple case of a 1-1 electrolyte; c~ w and O~mf are the electrolyte activities of the 
connate water and the mudfiltrate. 

For NaC1 solutions at 75 ~ F, these expressions reduce to 

, Rmf 
E1 = - - l l . 5 1 o g a W  - - ~ - - 1 1 . 5 ~ o g ~  (mV) 

O~mf 

. Rmf 
E2 = +59.11og~W- ~ + 5 9 . 1 1 o g . ~ _  (mV) 

Otmf 

Rmf and Rw are the electrical resistivities of the mudfiltrate and connate water, respectively. 
The potential difference between the mud column in front c,f a thick clean sandstone and that 

in front of an adjacent thick pure shale will therefore be under the indicated conditions 

Rmf 
Esv ~-- -- 70.6 log ~ (mV) (3) 

This equation is one of the fundamental relations in quantitative electric log analysis for clean forma- 
tions. If the porous strata contain disseminated clay particles, as is the case for so-called 'shaly sands', 
the liquid junction potentials established between the mudfiltrate and the connate waters take the form 
of imperfect membrane potentials. The electrochemical interpretation of such potentials was first given 
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by Teorell [5] and by Meyer and Sievers [6]. In the resulting quantitative expressions appear an addi- 
tional parameter, namely, the average concentration of fixed negative clay lattice charges in the inter- 
stitial volume, denoted by m r . Taking into account the reduced ionic activity of the counter ions associ- 
ated with the fixed lattice charges, de Witte [7] derived an approximate expression for the S.P. in shaly 
water sands in the form: 

m r + 2.5m w 
Esp m -- 70.6 log (3a) 

m r + 2.5mmf 

where the ionic concentrations mr, m w and mm~ , respectively, of the taxed lattice charges, the connate 
water and the mudfiltrate are expressed as molalities. 

In the practical electric log interpretation techniques, further corrections are made for ionic contents 
differing from that of NaC1 solutions and for the deviations from simple inverse proportionality in the 
relation between electrolyte activity and electrical resistivity. 

3. S.P. currents 

The quantitative relation between the double layer e.m.f.s of the diffusion potentials and the ohmic 
drops in the mud column, due to the resulting S.P. currents, was given by Doll of the Schlumberger 
Corporation [1 ]. In the mathematical presentation of Doll's treatment and that of the subsequent sec- 
tions on casing current distributions the following nomenclature will be used: 

The Laplace equation: 
Cylindrical coordinates: 4, r and z 

Z 

r = 

V =  
k =  

c ~ ( k )  _ 

fl( k ) 

angular measure in plane perpendicular to z-axis 
vertical distance along axis of hole; positive upward 
radial distance from axis of hole 
electrical potential 
variable of integration 
functions of the variable of integration, depending on the radii of the cylindrical boundaries 
and the resistivity contrasts across these boundaries. 

R esistivities : 
R e = average formation resistivity (~2m) 

R~ = mud resistivity or equivalent resistivity inside the drill hole (~m) 

a = R t  
Rm 

Modified Bessel functions: 

Io 
f l -~ 

Ko = 
K 1 = 

M(p) - 
Q(p) =- 

modified Bessel function of the first kind and zero order 
modified Bessel function of the first kind and first order 
modified Bessel function of the second kind and zero order 
modified Bessel function of the second kind and first order 
pKo(p)KI(p) 
pKo(p)I1(p) 

Potential in drill hole due to ionic double layers: 
Wo -- one half of the potential difference on the axis of the hole, between points at both sides of a 

sand-shale interface and at a large distance of the interface (half of the 'static' S.P. of 
Equation 3) 

Wz = potential along the axis of the hole, due to a single sand-shale interface, as a function of z 
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Superposition theorem: 
f i(z)  = input potential distribution as function of z 

L(z) 
;*(z) 

R(z) 

R'(z) 

= input current distribution as a function of z 
= response or output potential distribution as function of z 
= response or output current distribution as function of  z 
= response to the input of  a unit step function in the potential along the axis of  the hole 

=_ df*(z) (2~r)1/2 
dz 

dZf*(z) 
= d z  2 (21r)  1/2 

Special parameters and expressions used in the numerical analysis 
p = variable of  integration 

Ap = step size o f p  for numerical integration in a given interval 
F(p) = non-circular part of  integrand of the definite integral in the expression for the current 

resulting from a unit step function input (Equation 8) 
F'(p) - F(p)--p2Kl(p) 

P(n) = gamma function; I '(n + 1) = nP(n) for n > 0 
P(n + 1) = n ! for n integer 

With the above definitions and nomenclature we now present Doll's derivation of the quantitative 
expression for the S.P. currents, starting with the potential distribution around a point charge in the 
hole. The latter is found as a solution of the Laplace equation in cylindrical coordinates: 

_ _  a2V o2v +10__vv 1 o2v  ~ - o 
ar 2 r Or r 20q~ 2 0z 2 

As long as cylindrical symmetry prevails, V is independent of  the angle 0 so that (0 2 V/a4~ z) = O. 
By the method of separation of variables one obtains for the general solution: 

V -- f :  {a(k)Io(kr) + ~(k)Ko(kr)} cos (kz) dk (4) 

The derivation proceeds by observing that the potential due to a semi-infinite double layer at the bore- 
face, for all points enclosed by it, is equal to that of  a double layer disc perpendicular to the boreface 
and closing off  the cylindrical boundary. Upon differentiating Equation 4 with respect to z to reflect 
the dipole nature of  the double layer, using the reciprocity theorem for exchanging the roles of point 
source and potential at a point and integrating over the area of  the disc, Doll finds for the potential on 
the axis of  the hole due to a single sand-shale interface the expression: 

[ z 2 f :A(p ,a) i i (p)s in(pz)dp ] (5) W(z) = Wo 1 4 ( l + z 2 )  1/z 7r 

where A(p, a) = [apKo(p)Kl(P)]/[1 + apKo(p)Iffp)]. 
The S.P. currents in the hole are proportional to the voltage gradient (dW/dz). The open hole electric 

logs recorded the ohmic drops of  these currents in millivolts as a function of  depth as the Spontaneous 
Potential or S.P. curve. Fig. la  gives an example of  a portion of the S.P. curve for a typical well in the 
geothermal field of  Cerro Prieto, Baja California, Mexico. 

4. Casting currents 

When casing is set in the hole the S.P. currents are short-circuited. The resulting currents in the pipe as a 
function of depth,f~(z), are considered as a distortion of the system of currents in the open hole,f i(z) ,  
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Fig. 1. (a) S.P. (mV) vs depth (ft) 
for Well Number M-5 in geo- 
thermal field of Cerro Prieto 
Baja California Norte, Mexico; 
(b) Casing current (A) vs depth 
fit): Positive current upwards 
= +; positive current downwards 
z - -  

or rather the corresponding potentials fr(z) are taken as a distortion of the input potentials, f i(z),  
registered as the open hole S.P. 

The relation between the resulting distribution fr(z) and the input fi  (z) is given by the superposition 
theorem of linear transform theory, also known as Duhamel's theorem, in the following form: 

l f ~ f i ( y ) R ( z - - y ) d y  (6) /r(Z) -- (2rr)1/2 _ 

where R(z) = (df*(z)/dz)(2rr) 1/2 and f* (z )  is the response of the system to the input of  a unit step- 
function, i.e. for f i (z)  = 1 when z > 0 and f i (z)  = 0 for z < 0. 

This response to a unit step-function in potential is given precisely by Equation 5, with Wo = 0.5 and 
substituting for Rm a resistivity which gives an electrical resistance per metre length of the hole equal to 
the longitudinal resistance of one metre of  the casing. 

As we are more interested in the distribution of casing currents than in that of  the potential, we form 

the derivative d/r  (z) 
_ 1 f= fi(Y)R'(z --y)  dy (7) 

d.z (27T) 1/2 _ 

where R ' (z)  = (dR/dz) = [d2f*(z)/dz 2 ] (2r@/2. 
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The double differentiation of Equation 5 gives 

1 R'(z) = Wo z2)S/2 pA(p, a)Ii(p) sin (pz) dp (8) 
(2rr) 1/2 1 + lr - 

The numerical integration of Equation 7 is carried out by the Trapezoid rule, after first establishing a 
tabulation of R'(z) as a function ofz  and is repeated for all values of z, over the length of the hole, in 
order to obtain the current profile in the casing. 

The computation of Expression 8 is much more complicated, due to the fact that the rapid oscil- 
lations of sin (pz) for most of the values of the argument, make direct numerical integration impractical 
over the larger part of the integration interval. 

5. Numerical analysis 

A fairly efficient method for the evaluation of integrals of the type occurring in Equation 8, was 
presented by de Witte and Fournier [3]. The essence of this method and a number of significant im- 
provements developed in the course of the current research are now described. 

The basic idea of the procedure is to divide the non-circular part of the integrand, which we denote by 
the function F(p), into a number of intervals and to approximate F(p) in each interval by a simpler 
function whose product with sin (pz) can be integrated formally. In the central intervals fourth order 
polynomials were used to approximate F(p), while for p ~ 1 and for 15 < N < p < oo the low order 
terms of the asymptotic expansions of the modified Bessel functions were combined into relatively 
simple expressions. The precision of the polynomial approximations was monitored by means of small 
triangles whose apices were formed by the difference between the approximation and the true value of 
F(p),  and whose contributions to the total integral were determined and listed separately with the 
digital results. If the summed contributions of the error triangles was judged to be too large, the size 
of the intervals was reduced. In the present work several improvements, both in efficiency and precision, 
are introduced especially in the processing of the asymptotic ends of the integrand and the computations 
for very large values of z. 

A considerable simplification was achieved by substituting a continuation of the polynomial approxi- 
mations in place of the asymptotic expansions, for small values of the argument. Such substitution is 
permissible in view of the fact that F(p) goes to zero for p -+ 0. For values ofpz ~ 1, however, there 
occurs a very severe mutual cancellation between the values of the integrated expressions for the pro- 
ducts of the individual polynomial terms and sin (pz), to such extent that even using double precision, 
one is left with an insufficient number of significant figures in the result. To eliminate this difficulty, 
simple numerical integration was introduced for the intervals with Pmax z ~. ~/4, wlae~e the integrand 
increases monotonously. As the step size, 2xp, is constant in each interval, the five point Newton-Cotes 
method was selected, which is given by: 

f~o~ f(x) 2&x dx = 45 ( 7 f o + 3 2 f l +  1 2 f 2 + 3 2 f a + 7 f 4 )  

Another major simplification was made in the interval p > N > 15, based on the following sequence 
of considerations: The function F(p) can be written in the form 

aP2M(P) Zl(p) 
F(p) - 1 + aQ(p) 

For large values o fp  we have the asymptotic expansion: 

1 (1)23 
Q(p) = 1/2 1 2p 2(2p) 3 

which shows that Q(p) tends towards 1/2. 

(1)~(3)*s 
2(2p)~ '" "J 
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For 8" casing (20.3 cm) and R t = 5 ohm m, the parameter 'a '  is of the order of l0  s so that aQ(p) >> 1 
and therefore in the interval under consideration F(p) -+ p2Kl(p). 

At this point we use one of the integral transforms of Erdelyi et al. [8]: 

~P2Kl(p)sin(zp)dp = 2(~r)lJ2I" + (9) 
We now write: 

;N p2Ka(p) sin (zp) dp = J0 p2KI(P) sin (zp) dp - - f  o pZKt(p) sin (zp) dp 

This means that in the interval 0 - N  we can change the non-circular part of  the integrand, F (p )  to F'(p), 
where: 

F ' ( p )  = K,(p)] 
[1 + aQ(p) 

and add to the resulting integral the closed form expression of Equation 9, thus eliminating entirely the 
quite laborious evaluation of the integrals of the asymptotic expansion terms multiplied by sin (zp) for 
the interval N <  p < oo. 

Furthermore,  considering that for the Gamma function we have P(n + t )  = nF(n),  for n > 0 and 
P(�89 = Or) l/2, the closed form expression: 2(lr)v2p(5/2)z(z2 + 1) -s/2, becomes ~r/2.3z(1 + z2) -s/2, 
thereby cancelling precisely the algebraic part (the first term on the right hand side) of Equation 8. 

With this set of  simplifications Equation 8 reduces to: 

[; ] 1 R'(z) = Wo (zp)dp (2z@/2 o F (p) sin (10) 

where N satisfies the condition: aQ(N) >> 1. 
The values of  R'(z) start at zero for z = 0, pass through a maximum at a value of z smaller than 

unity and then decay exponentially as z increases.* For z > 500, the magnitude of R ' (z)  has been 
reduced to such extent that effects of the errors of approximation become noticeable. One is apprised 
of this fact by  the magnitude of the contribution of  the error monitoring triangles to the final result. 
Fortunately for these high values of  z, the function R'(z) becomes inversely proportional to z, a fact 
which can be observed empirically and is verified theoretically in the following manner: 

The function F ' ( z )  can be represented by the sum of a polynomial P~(p) of degree n and an exponential 
of  the form ~ e -~p. It can be demonstrated that the definite integrals, between the limits zero and 
2~zM/z, where M is an integer of  any size, of  the product Pn(P) sin (zp), are inversely proportional to z. 

~2frM/z -13P 
Similarly we have: Jo a e sin (zp) dp ~ z/(z 2 + (j2), which for z sufficiently large approaches 1/z. 

In the entire analysis presented here the unit length is taken as the radius of  the hole. This means 
that if we wish to read the S.P. input in steps of  2.5 ft and perform the numerical integration of 
Equation 7 with the same step size, we must compute and tabulate R ' (z)  in increments Az = 7.5 in the 
case of  an eight inch casing where one foot equals three hole radii. 

The parameter 'a '  is a function of the average formation resistivity, Rt ,  and the resistance per unit 
length of casing and changes therefore with the diameter and wall thickness as well as with the metal- 
lurgical composition of the casing. 

6. Field example 

Fig. la  shows a section of the S.P. log for Well No. M-5 in the geothermal field of  Cerro Prieto in Baja 
California, Mexico. In this graphical recording the average shale base-line was taken as the reference zero. 
A parallel displacement of  this line does not affect the casing current calculations. 

* A typical example of the general form ofR '(z) as a function of z, is given in Fig. 7 of [2]. 
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The computed casing current profile for the same depth interval is shown in Fig. lb. Where positive 
current diminishes upwards, it is leaving the pipe. This means that the corresponding area is anodic and 
a locus of external casing corrosion. In the interval depicted, significant anodic areas occur at the follow- 
ing depths: 2700-2735; 2817-2842; 2877-2895; 2935-2950; 2965-3030; 3060-3115 and 3127-3147. 
The corrosive current densities in these zones can be calculated from the formula: 

I(z + ~ z ) -  I(z) 
i e = (11) 

~d,Sz 

where the current density i e will be in A cm -2 when the casing current, I, is taken in amperes while the 
depth differential, A~z, and the external casing diameter, d, are expressed in cm. 

As shown in [4] the resulting iron loss per year is found using Faraday's law and the following con- 
versions; 1 mA = 10 -3 C s -1 = 86.4 C day -1 = 31 536 C yr-l  = 9.125 g yr -l . We assume here that all of  
the iron goes into solution as ferrous ions. From the iron loss per cm 2 given in gcm ~2 we find the depth 
of iron removal or corrosive penetration, dividing by the metal density (g cm-a), which yields: 
1 m A  c m  -~  -+ 1 . 2  c m  y r  -~ . 

In the current profile for the interval of Fig. 1, the steepest anodic slope occurs at a depth of 2820- 
2822.5 ft, where the computer output listed a decrease of positive current of 505 mA per 2.5 ft. For an 
external casing diameter of 11~" this corresponds to a current density of 0.071 mA cm -~ or to a depth 

e l  t! of corrosive iron removal of 0.85 mm per year. For a wall thickness or ~ this would mean total failure 
of unprotected pipe, without cement, in about fifteen years. Stresses and internal pressure on the pipe 
will accelerate the failure, as does the superposition of galvanic pitting on the corrosion profile we have 
described. The distribution and magnitude of galvanic effects due to inhomogeneities in the surface 
layers of the casing steel can be studied by running inside casing S.P. surveys [4]. These effects seem in 
general to be of shorter duration than the S.P. current corrosive mechanism and therefore play a sub- 
sidiary role in failure prognostication. As mentioned before iron loss calculations from S.P. casing 
current profiles in the San Miguelito oil field of Ventura County, California, carried out in a cruder, less 
precise form than that of the methodology described in this study, showed consistent agreement with 
the iron loss measured directly on pulled casing strings [4]. 

In contrast to the galvanic effects which increase the casing failure rate, properly bonded cement 
sheaths and polarization of the cathodic areas of the pipe will tend to slow down the corrosive pene- 
tration. For the order of current densities under consideration the cathodic polarization or hydrogen 
overpotentials in anaerobic environments act as an added electrical resistance per unit surface area of 
the pipe. Similarly a homogeneous well bonded cement sheath forms a cylindrical layer of additional 
resistance to current flow in the annular space between the casing and the boreface. Both of these 
factors can be incorporated in our analytical model by using multiple concentric cylindrical boundaries 
in the derivation of the potential distribution due to the S.P. dipole layers. The essential mathematics for 
the solution of the multiple boundary problem is that used in the computation of the resistivity depar- 
ture curves, used in quantitative electric log interpretation and was described in detail by Frankel et  aI. 

[9]. 
The treatment of uneven cement bonding, strong variations in formation resistivities, multiple casing 

strings and other vertical discontinuities is preferably carried out using finite elements numerical tech- 
niques. 

As a final spectacular example of the mechanism of casing corrosion by the shortcircuiting of S.P. 
type electrolyte concentration potentials, we mention the casing failures in the N.W. Burnett oil field in 
Ellis County, Kansas. Here the relatively fresh water bearing Dakota sandstones lie stratigraphically 
above the Wellington Salt section. The diffusion and shale membrane permeability effects cause the fresh 
water sands to be positive with respect to the halite and the salt saturated mud column. When pipe is 
set, positive current enters the casing opposite the Dakota sands and leaves in the upper part of the salt 
section, where it produces disastrous iron losses and consequent casing failures. 

It is also of interest to observe that while borehole spontaneous potentials are ubiquitous, the rates of 
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external casing corrosion vary considerably from region to region. The absence of severe casing corrosion 
may be due to various factors. In limestone areas extremely hard and resistive scales are frequently 
deposited at the cathodic regions of the pipe, strongly reducing the intensity of the corrosion currents. 
In many other fields, especially at the edges of sedimentary basins, moving ground waters replace the 
mud columns in the annulus around the casing within months of completion of the wells thus removing 
the cause of the spontaneous potentials. A good example of this is found in the Los Angeles Basin fields, 
which have by and large the same Pliocene and Miocene stratigraphic section as the fields in Ventura 
County and generally do not suffer severely damaging external casing corrosion rates. 

7. Cathodic protection requirements 

The objective of cathodic protection is to apply to the structure under consideration and its environ- 
ment an electric current system in which the former is the cathode, i.e. a system in which, considered by 
itself, negative current issues from all parts of the structure to be protected. In the case of deep well 
casings negative current is supplied to the casing head and the current is allowed to distribute itself 
according to the law of total least resistance. The equations for the exact distribution of a total 
cathodic protection current, Ip, were derived by Roche [10], providing density profiles for either single 
or multiple casing strings. Assuming now that using Equation 11 and a casing current profile computed 
for a given well we have obtained a current density profile, ic(Z), as a function of z and similarly we have 
calculated the cathodic protection current density distribution, ip(z), along the entire casing string. 
The latter will be proportional to the total protection current, Iv, if we ignore the nonlinearities 
of the overpotentials. As a first move in our determination of the optimal Ip we choose a value suf- 
ficiently large so that for all depths z n the absolute value of the protection current density l ip(Zn)l > 
ic(zn ) or [ip(Zn)l/ic(z, 0 > 1. We next find the minimum value of this ratio, which we shall denote by p. 
If our initial choice of the protection current is (Ip)o then (Ip)o/tJ is the cathodic protection current that 
will just cancel all anodic areas of the corrosion current system. 

In practice we may be satisfied with a smaller amount of protection, i.e. an amount that reduces the 
iron loss sufficiently so that failure does not occur during the productive life of the field. One might 
choose a failure span of forty years for oil wells and as much as eighty years for geothermal wells. As 
cathodic overprotection carries its own risk of casing embrittlement due to metal hydride formation, it is 
important to select the smallest amount of protection current that will be economically cost effective. 

8. Conclusions 

This paper describes the electrochemistry, mathematical physics and numerical analysis related to the 
evaluation of the principal component of external casing corrosion in deep wells. It presents a procedure 
for delineating the areas of major corrosive attack and provides a first order estimate of the iron loss 
rates in these various areas. 

The current research has been limited to analyses for unprotected pipe. Future work has to take into 
account the presence of a cement sheath, polarization in the cathodic areas and a possible multiplicity of 
casing strings. All of these factors can be handled by extensions of the analytical approach presented 
here or by the introduction of finite element numerical methods. It seems to be advantangeous to carry 
out both procedures in parallel, using the analytical solutions to check effects of step size on con- 
vergence rates and precision for the finite element techniques. With this preliminary control, the latter 
can then be extended to apply to cases with discontinuous cement coating and strong variations in the 
electrical resistivities of the formations penetrated by the well. A guideline has been established for the 
use of the ultimate results in the calculation of the cathodic protection current required to preserve the 
casing over the productive life of the well. 
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